Sourcecode: Example5A.c

Sourcecode: ExampleSA.c

COLLABORATORS

TITLE :

Sourcecode: Example5A.c

ACTION

NAME DATE

SIGNATURE

WRITTEN BY

February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

Sourcecode: ExampleSA.c

Contents

1 Sourcecode: ExampleSA.c

1.1 ExampleSA.C o o e e

Sourcecode: ExampleSA.c

Chapter 1

Sourcecode: Example5A.c

1.1

Example5A.c

/***k*k~k*******k‘k*k~k******~k*k‘k~k********k***k*k*************‘k*‘k******/

/ %
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ %
/ *
/ *
/ *
/ *

x/

Amiga C Encyclopedia (ACE) Amiga C Club (ACC) =/
—— */
*/

Manual: AmigaDOS Amiga C Club */
Chapter: Handlers Tulevagen 22 */
File: ExamplebA.c 181 41 LIDINGO */
Author: Anders Bjerin SWEDEN */
Date: 93-03-16 */
Version: 1.4 */
*/

Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
x/

Registered members may use this program freely in their =/
own commercial/noncommercial programs/articles. */

*/

/***/

/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ %
/ *
/ *
/ *
/ *
/ *
/ *

This example demonstrates how you can use the Pipe handler
to copy (pipe) data to another program. This is the first
part of the example, program A. To see how the Pipe handler
work you have to start both program A and B. Once both are
running can you enter some text in this (progra A’s) console
window. When you press enter the console will be closed and
the text you have entered is piped to the other program.
Program B will receive the text and prints it in it’s own
console window.

If you want to transfer several lines of data you have to
remember that the Pipe handler uses a small buffer (around
4000 bytes, 4kB), and you will only be able to collect data
when the buffer has been filled, or when the file is closed.
In in this example I close the file once the data has been
sent so it will immediately be available for program B.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Sourcecode: ExampleSA.c

/* Include the dos library definitions: */
#include <dos/dos.h>

/+ Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <clib/exec_protos.h> /* System functions... */
#include <stdio.h> /+ Std functions [printf()...] =*/
#include <stdlib.h> /* Std functions [exit()...] */
#include <string.h> /* Std functions [strlen()...] =/

/* The maximum number of characters that we can store in =*/
/+ our small buffer (including a NULL sign at the end): «/
#define MAX_LENGTH 512

/* Set name and version number: =/
UBYTE *version = "$VER: AmigaDOS/Handlers/ExamplebA 1.4";

/* Declared our own function(s): =x/

/% Our main function: =%/
int main(int argc, char *argv[]);

/+ Writes text to an already open file: «/
/+* (e.g. File, Console or Pipe handler) =/
int print_text
(

BPTR file,

STRPTR text

)i

/* Collects text from an already open file:=/
/+x (e.g. File, Console or Pipe handler) */
int collect_text
(

BPTR file,

STRPTR text
)

/% Main function: «*/

int main(int argc, char *argv[])

{
/+ Store the number of characters used here: «/
int number;

/+x Create a buffers: =/
UBYTE user_input[MAX_LENGTH];

/* A "BCPL" pointer to our Console window: =/

Sourcecode: Example5A.c 3/5

BPTR my_console;

/+ A "BCPL" pointer to our Pipe handler: =/
BPTR my_pipe;

/+ Open a Console window: (Note that we have not added a close x/
/+ gadget on the window, nor will it wait for the user to type =/
/+ Ctrl-\ before the window is closed.) */

my_console =
Open("CON:0/0/640/100/Program A", MODE_OLDFILE);

/+ Have we opened the Console successfully? x/
if(my_console == NULL)
{
/* Inform the user: x/
printf("Error! Could not open the Console device!\n");

/* Exit with an error code: x/
exit (20);

/* Open the Pipe handler: (We call the pipe "UserData", and */
/* we open the pipe handler as a new handler. Program B opens x/
/* the handler as an old handler. Note that one program must =/

/+ open the handler as new and the other program open the */
/+ handler as old! The order does not matter.) */
my_pipe =

Open("PIPE:UserData", MODE_NEWFILE);

/+ Have we opened the Pipe handler successfully? */
if(my_pipe == NULL)
{
/* Inform the user: */
printf("Error! Could not open the Pipe handler!\n");

/* Close the Console window: =*/
Close(my_console);

/* Exit with an error code: =/
exit (21);

/* Tell the user what to do: */
print_text (my_console,

"1l. Start Example7B so it will be ready to collect some text.\n");
print_text (my_console,

"2. Type some text in this window and press ENTER (RETURN) .\n");
print_text (my_console,

"The text will be copied (piped) to the other progrm’s window\n");
print_text (my_console,

"were i1t will be printed. This window closes automatically when\n");

Sourcecode: ExampleSA.c

4/5

print_text (my_console,
"the text has been piped.\n\nText to send: ");

/* Collect some text from the Console window: =*/
number = collect_text (my_console, user_input);

/+ Send the data to the Pipe handler so the x/
/+ other program can collect it: */
print_text (my_pipe, user_input);

/* Close the Pipe handler: =/
Close(my_pipe);

/* Close the Console window: =*/
Close(my_console);

/* Since we did not set the flag "WAIT" this console window =/
/* will automatically be closed when we close the file. x/

/* The End! =*/
exit(0);

/* Writes text to an already opened file, and returns =/
/* the number of characters actualy written. */

int print_text
(
BPTR file,
STRPTR text

/* Store the number of characters (bytes) actualy written here:

int characters_written;

/* Write the text: «/
characters_written = Write(file, text, strlen(text));

/* Returns the number of characters actually written: =/
return(TRUE);

/+ Collects text from an already opened file, and returns =/
/* the number of characters collected. */

int collect_text

(

*/

Sourcecode: ExampleSA.c

5/5

BPTR file,
STRPTR text

/* Store the number of characters (bytes) actualy read here:

int characters_read;

/* Collect some text: =/
characters_read = Read(file, text, MAX_LENGTH - 1);

/+ Put the NULL (’\0’) sign at the end of the string: =/
text [characters_read] = NULL;

/+ Returns the number of characters collected: */
return(characters_read);

*/

	Sourcecode: Example5A.c
	Example5A.c

