
Sourcecode: Example5A.c

Sourcecode: Example5A.c ii

COLLABORATORS

TITLE :

Sourcecode: Example5A.c

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sourcecode: Example5A.c iii

Contents

1 Sourcecode: Example5A.c 1

1.1 Example5A.c . 1

Sourcecode: Example5A.c 1 / 5

Chapter 1

Sourcecode: Example5A.c

1.1 Example5A.c

/***/
/* */
/* Amiga C Encyclopedia (ACE) Amiga C Club (ACC) */
/* -------------------------- ------------------ */
/* */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Handlers Tulevagen 22 */
/* File: Example5A.c 181 41 LIDINGO */
/* Author: Anders Bjerin SWEDEN */
/* Date: 93-03-16 */
/* Version: 1.4 */
/* */
/* Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/* */
/* Registered members may use this program freely in their */
/* own commercial/noncommercial programs/articles. */
/* */
/***/

/* This example demonstrates how you can use the Pipe handler */
/* to copy (pipe) data to another program. This is the first */
/* part of the example, program A. To see how the Pipe handler */
/* work you have to start both program A and B. Once both are */
/* running can you enter some text in this (progra A’s) console */
/* window. When you press enter the console will be closed and */
/* the text you have entered is piped to the other program. */
/* Program B will receive the text and prints it in it’s own */
/* console window. */
/* */
/* If you want to transfer several lines of data you have to */
/* remember that the Pipe handler uses a small buffer (around */
/* 4000 bytes, 4kB), and you will only be able to collect data */
/* when the buffer has been filled, or when the file is closed. */
/* In in this example I close the file once the data has been */
/* sent so it will immediately be available for program B. */

Sourcecode: Example5A.c 2 / 5

/* Include the dos library definitions: */
#include <dos/dos.h>

/* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <clib/exec_protos.h> /* System functions... */
#include <stdio.h> /* Std functions [printf()...] */
#include <stdlib.h> /* Std functions [exit()...] */
#include <string.h> /* Std functions [strlen()...] */

/* The maximum number of characters that we can store in */
/* our small buffer (including a NULL sign at the end): */
#define MAX_LENGTH 512

/* Set name and version number: */
UBYTE *version = "$VER: AmigaDOS/Handlers/Example5A 1.4";

/* Declared our own function(s): */

/* Our main function: */
int main(int argc, char *argv[]);

/* Writes text to an already open file: */
/* (e.g. File, Console or Pipe handler) */
int print_text
(

BPTR file,
STRPTR text

);

/* Collects text from an already open file:*/
/* (e.g. File, Console or Pipe handler) */
int collect_text
(

BPTR file,
STRPTR text

);

/* Main function: */

int main(int argc, char *argv[])
{

/* Store the number of characters used here: */
int number;

/* Create a buffers: */
UBYTE user_input[MAX_LENGTH];

/* A "BCPL" pointer to our Console window: */

Sourcecode: Example5A.c 3 / 5

BPTR my_console;

/* A "BCPL" pointer to our Pipe handler: */
BPTR my_pipe;

/* Open a Console window: (Note that we have not added a close */
/* gadget on the window, nor will it wait for the user to type */
/* Ctrl-\ before the window is closed.) */
my_console =
Open("CON:0/0/640/100/Program A", MODE_OLDFILE);

/* Have we opened the Console successfully? */
if(my_console == NULL)
{

/* Inform the user: */
printf("Error! Could not open the Console device!\n");

/* Exit with an error code: */
exit(20);

}

/* Open the Pipe handler: (We call the pipe "UserData", and */
/* we open the pipe handler as a new handler. Program B opens */
/* the handler as an old handler. Note that one program must */
/* open the handler as new and the other program open the */
/* handler as old! The order does not matter.) */
my_pipe =
Open("PIPE:UserData", MODE_NEWFILE);

/* Have we opened the Pipe handler successfully? */
if(my_pipe == NULL)
{

/* Inform the user: */
printf("Error! Could not open the Pipe handler!\n");

/* Close the Console window: */
Close(my_console);

/* Exit with an error code: */
exit(21);

}

/* Tell the user what to do: */
print_text(my_console,

"1. Start Example7B so it will be ready to collect some text.\n");
print_text(my_console,

"2. Type some text in this window and press ENTER (RETURN).\n");
print_text(my_console,

"The text will be copied (piped) to the other progrm’s window\n");
print_text(my_console,

"were it will be printed. This window closes automatically when\n");

Sourcecode: Example5A.c 4 / 5

print_text(my_console,
"the text has been piped.\n\nText to send: ");

/* Collect some text from the Console window: */
number = collect_text(my_console, user_input);

/* Send the data to the Pipe handler so the */
/* other program can collect it: */
print_text(my_pipe, user_input);

/* Close the Pipe handler: */
Close(my_pipe);

/* Close the Console window: */
Close(my_console);

/* Since we did not set the flag "WAIT" this console window */
/* will automatically be closed when we close the file. */

/* The End! */
exit(0);

}

/* Writes text to an already opened file, and returns */
/* the number of characters actualy written. */

int print_text
(

BPTR file,
STRPTR text

)
{

/* Store the number of characters (bytes) actualy written here: */
int characters_written;

/* Write the text: */
characters_written = Write(file, text, strlen(text));

/* Returns the number of characters actually written: */
return(TRUE);

}

/* Collects text from an already opened file, and returns */
/* the number of characters collected. */

int collect_text
(

Sourcecode: Example5A.c 5 / 5

BPTR file,
STRPTR text

)
{

/* Store the number of characters (bytes) actualy read here: */
int characters_read;

/* Collect some text: */
characters_read = Read(file, text, MAX_LENGTH - 1);

/* Put the NULL (’\0’) sign at the end of the string: */
text[characters_read] = NULL;

/* Returns the number of characters collected: */
return(characters_read);

}

	Sourcecode: Example5A.c
	Example5A.c

